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ABSTRACT

Structural variants (SVs) – rearrangements of an individuals’
genome – are an important source of heterogeneity in hu-
man and other mammalian species. Typically, SVs are iden-
tified by comparing fragments of DNA from a test genome
to a known reference genome, but errors in both the sequenc-
ing and the noisy mapping process contribute to high false
positive rates. When multiple related individuals are stud-
ied, their relatedness offers a constraint to improve the sig-
nal of true SVs. We develop a computational method to pre-
dict SVs given genomic DNA from a child and both parents.
We demonstrate that enforcing relatedness between individ-
uals and constraining our solution with a sparsity-promoting
`1 penalty (since SV instances should be rare) results in im-
proved performance. We present results on both simulated
genomes as well as two-sequenced parent-child trios from the
1000 Genomes Project.

Index Terms— Sparse signal recovery, convex optimiza-
tion, next-generation sequencing data, structural variants,
computational genomics

1. INTRODUCTION

The genome (or complete DNA sequence) of an individual is
vertically inherited from parent to child. However, the evolu-
tionary processes of mutation, coupled with more complex
heredity in sexually reproducing organisms, ensures varia-
tion between genomes of individuals within a species. Since
genomes vary, the common practice has been to develop a ref-
erence genome for each species along with an annotation of
common sites of variation [1, 2]. Genomic variation can ei-
ther consist of a single letter (nucleotide), so called single nu-
cleotide variants (SNVs), or rearrangements of larger regions
of DNA, called structural variants (SVs). In both cases, varia-
tion is identified by comparing fragments of DNA sequenced
from a test (unknown) genome to a given reference (see Fig-
ure 1) [4, 3] . Detecting SVs is typically more challenging
than SNVs, and subject to errors from both DNA sequencing
process as well as alignment to the reference genome. Be-
cause of this, the signal of a true SV may be compromised by
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Fig. 1: Illustration of deletion in a test genome (unknown)
relative to a reference genome (known). Deletions (and other
SVs) are identified by sequencing fragments (of a particular
length distribution) from the test genome and mapping them
to the reference. Fragments whose mapped distance is sig-
nificantly larger than expected (black fragments) indicate a
potential deletion.

noise and standard detection methods suffer from high false-
positive rates [3, 4].

Recent advances in high-throughput DNA sequencing
technologies have meant that researchers are now capable
of obtaining DNA fragments from hundreds or thousands of
individuals; typically, many of the individuals sampled are
related [5, 6]. Since the rate of SV creation through genetic
mutation is thought to be low [7], we can constrain the SV
prediction problem by enforcing that when children and par-
ents are sequenced, SVs present in the child must have been
inherited from one of the parents.

In this paper, we extend the method from [8] by employ-
ing a similar maximum likelihood approach to variant detec-
tion but now include constraints from both parents as well as
the child. In our model, we not only require that any SVs
in the child are also present in one of the parents, but also
exclude the possibility of the child having a variant if nei-
ther parent possesses the variant. Numerical results of both
simulated and real sequencing data improves SV detection
for low-coverage individuals using the familially constrained
one-parent method.

2. METHOD

IHere we consider a general framework for detecting struc-
tural variants (SVs) given sequencing data from two parents
(p1 and p2) and one child (c). We assume that there are n



locations in the genome that could be a potential SV. For
simplicity, we consider each individual to be haploid (only
one copy of each chromosome). As such, the true SV sig-
nal for each individual at each location is either a 0, if they
do not have an SV at that location, or 1 if they do. The
observed data are the number of DNA fragments supporting
each potential SV, ~yp1 , ~yp2 , ~yc ∈ Rn for both parents and the
child, and the data are assumed to follow a Poisson distri-
bution [4], ~yi ∼ Poisson(Ai ~f∗i ), where i ∈ {p1, p2, c} and
Ai = (ki − ε)I ∈ Rn×n is a linear projection of the true
genomic variants ~f∗i ∈ Rn to the observation ~yi. The con-
stants kp1 , kp2 , and kc are the sequencing coverage for each
individual, the mean of the Poisson distribution. Finally, we
assume that the error in measurement ε > 0 is the same for
all observations. We stack the true variant signals and obser-
vations in the form ~f∗ = [~f∗c ;

~f∗p1 ;
~f∗p2 ] and ~y = [~yc; ~yp1 ; ~yp2 ],

the general observation model is be expressed as

~y ∼ Poisson(Â ~f∗), (1)

where Â ∈ R3n×3n is a block-diagonal matrix with Â =
diag(Ac, Ap1 , Ap2).

Familial constraints. We require the (continuous) elements
for each individual lie within 0 and 1, i.e., 0 ≤ ~f ≤ 1. The
continuous relaxation of the reconstruction ~f thus allows us
to to apply gradient-based techniques. Further, we impose the
element-wise constraints that if both parents have the SV, then
the child must also, i.e., ~fp1 + ~fp2 − 1 ≤ ~fc for each location.
Finally, if neither parent has the SV, then the SV cannot be
present in the child, i.e., ~fc ≤ ~fp1 +

~fp2 .

2.1. Problem Formulation

Under the Poisson process model (1), the probability of ob-
serving ~y is given by

p(~y |Â ~f∗) =
3n∏
i=1

(~eTi Â
~f∗)~yi

~yi!
exp

(
−~eTi Â ~f∗

)
, (2)

where ~ei is the i-th column of the 3n × 3n identity matrix.
The maximum likelihood principle is used to determine the
unknown Poisson parameter Â ~f∗ such that the probability of
observing the vector of Poisson data ~y in (2) is maximized.
Thus, the genomic variants reconstruction problem has the
following constrained optimization form:

minimize
~f∈R3n

φ(~f) ≡ F (~f) + τpen(~f)

subject to ~fp1 +
~fp2 − 1 ≤ ~fc ≤ ~fp1 +

~fp2 ,

0 ≤ ~f ≤ 1

(3)

where F (~f) is the negative Poisson log-likelihood function

F (~f) = 1T Â ~f −
3n∑
i=1

~yi log
(
~eTi Â

~f + ε
)
,

where ~f = [~fc; ~fp1 ;
~fp2 ], τ > 0 is a regularization parameter,

1 is a vector of ones, and pen is usually a sparsity enforcing
penalty functional.

Since true variants are rare, the penalty functional pen(~f )
in (3) can thus be replaced by sparsity-promoting `1-norm of
~f , i.e., ‖~f‖1. In the SPIRAL framework [9], the solution of
(3) is obtained by minimizing a sequence of quadratic mod-
els to the function F (~f). In these models, the Hessian in the
second-order Taylor series expansion of F (~f) at the current
iterate ~fk is replaced by a scaled identity matrix αkI with
αk > 0 (see [10, 11] for details). This quadratic approxima-
tion can be simplified to a subproblem of the form:

~fk+1 = arg min
~f∈R3n

1
2‖~f − ~s

k‖22 + τ
αk
‖~f‖1

subject to ~fp1 +
~fp2 − 1 ≤ ~fc ≤ ~fp1 +

~fp2 ,

0 ≤ ~fc, ~fp1 ,
~fp2 ≤ 1,

(4)

where ~sk = [~skc ;~s
k
p1 ;~s

k
p2 ] = ~fk − 1

αk
∇F (~fk). Then, the

subproblem in (4) can be separated into scalar minimization
problems (see [9] for details). Completing the squares and
ignoring constant terms, we have

minimize
fc,fp1 ,fp2∈R

1
2 (fc − c)

2 + 1
2 (fp1 − p1)

2 + 1
2 (fp2 − p2)

2

subject to fp1 + fp2 − 1 ≤ fc ≤ fp1 + fp2 , (5)
0 ≤ fc, fp1 , fp2 ≤ 1

where c = sc−λ, p1 = sp1−λ, and p2 = sp2−λ. The feasi-
ble solution to (5) is obtained by orthogonally projecting the
solution (c, p1, p2) to a three-dimensional feasible region (see
Fig. 2). In particular, there are 27 regions to be considered
in the fc-fp1 -fp2 tri-dimensional space according to the con-
straints of (5). If (c, p1, p2) satisfy the constraints of (5), then
the minimizer for the subproblem (5) corresponds to the min-
imizer given in Table 1 (Interior). Otherwise, the subproblem
solution is projected to a vertex, edge, or surface of Figure 2.
Tables 1 and 2 summarize a few of the regions and projections
considered.

3. RESULTS

In this section, we evaluate the effectiveness of the proposed
familially-constrained two-parent approach on both simulated
and real genomic data. The proposed method is implemented
in MATLAB by modifying the existing SPIRAL approach
[12] to solve subproblems (5). The algorithm is initialized
by ÂT~y and terminates if the relative difference between con-
secutive iterates converged to ‖~fk+1 − ~fk‖2/‖~fk‖2 ≤ 10−8.
We compare the results with the regular constrained (i.e., only
nonnegativity constrained) method and familially-constrained
one-parent method [8]. The regularization parameters (τ)
for all experiments are optimized to get the minimum RMSE
(%) = 100 · ‖f̂ − ~f∗‖2/‖~f∗‖2.



Fig. 2: The three-dimensional feasible region of the mini-
mization problem (5) on the fc−fp1−fp2 axis. Subproblem
minimizers not satisfying the constraints are projected onto
the region. Left : Front view. Right : Back view.

Table 1: Examples of solutions on the feasible region

Minimizer c p1 p2

In
te

ri
or

(c, p1, p2)
0 ≤ c ≤ 1,

0 ≤ p1 ≤ 1 0 ≤ p2 ≤ 1c ≤ p2 + p1,

c ≥p2+p1−1

V
er

te
x

(0, 0, 0)
c ≤ −p2, p1 ≤ 0 p2 ≤ 0
c ≤ −p1

(0, 0, 1)
c ≤ 0,

p1 ≤ p2 − 1 p2 ≥ 1
c ≤ −p1

(1, 1, 0)
c ≥ 1,

p1 ≥ p2 + 1 p2 ≤ 0
c ≥ −p1 + 2

(1, 1, 1)
c ≥ −p1 + 2,

p1 ≥ 1 p2 ≥ 1
c ≥ −p2 + 2

E
dg

e

(0, s1, t1) c< 1
2
(1−p1−p2)

p1 < p2 + 1,
p2 > 1−p1

p1 > p2 − 1

(1, s2, t2) c> 1
2
(3−p1−p2)

p1 < p2 + 1,
p2 < 1−p1

p1 > p2 − 1

(r3, 0, t3)
c > −p2,

p1<
1
2
(p2−c) p2 < 2−c

c > p2

(r4, s4, 0)
c > −p1, p1 < 2−c p2<

1
2
(p1−c)

c > p1

Su
rf

ac
e (r7, s7, t7)

c ≥p2+p1,
p1≥ 1

2
(p2−c) p2≥ 1

2
(p1−c)

c≤ 3
2
−1

2
(p1+p2)

(r8, s8, t8)
c ≤p2+p1−1, p1 ≤ p2 ≤

c≥ 1
2
(1−p2−p1)

1
2
(p2−c+2)

1
2
(p1−c+2)

Table 1. Examples of minimizers to the subproblem (5) above
are obtained by projecting the minimum of the unconstrained
problem (c, p1, p2) onto the feasible region illustrated by (2).
The fc-fp1 -fp2 tri-dimensional space is partitioned into 27
regions depending on c, p1, and p2. Projections onto edges
and surfaces are represented as linear combinations of c, p1,
and p2 in Table 2.

3.1. Simulated Data

For this experiment, we simulated two parent signals ~fp1 and
~fp2 and a child signal ~fc of size 105. Both true parent signals

Table 2: Projections on the feasible region

Minimizer r s t

E
dg

e

(0, s1, t1) 0 1
2
(p1−p2+1) 1

2
(p2−p1+1)

(1, s2, t2) 1 1
2
(p1−p2+1) 1

2
(p2−p1+1)

(r3, 0, t3)
1
2
(c+p2) 0 1

2
(c+p2)

(r4, s4, 0)
1
2
(c+p1)

1
2
(c+p1) 0

(r5, s5, 1)
1
2
(c+p1)

1
2
(c+p1) 1

Su
rf

ac
e

(r7, s7, t7)
2c+p1+ p2

3

c+2p1−p2
3

c−p1+2p2

3

(r8, s8, t8)
1
3
(2c+ p1+

1
3
(c+ 2p1− 1

3
(c− p1+

p2 − 1) p2 + 1) 2p2 + 1)

Table 2. Examples of projections (r, s, t) of (c, p1, p2) to the
surfaces and edges of (2) are obtained by first considering
the region in fc-fp1 -fp2 tri-dimensional space as described in
Table 1. All projections to the feasible region are calculated
and represented as linear combinations of c, p1, and p2.

have 500 variants, i.e., the sparsity of each signal is 0.5%,
while they share 50% of variant similarities. The value of the
child signal at each point is chosen from either parent with
equal probability. The error term ε is set to 0.01 in obtaining
measurements from the forward model.
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Fig. 3: ROC curves illustrate the false positive rate vs true
positive rate for the child signal reconstruction in the simu-
lated data with kp1 = 5, kp2 = 5, kc = 2, and 50% similarity
of variants between parents using the three methods.

Analysis. We first examine the child signal reconstruction.
Fig. 3 illustrates the false positive rate vs. true positive rate
for the child signal reconstruction with coverages kp1 = 5,
kp2 = 5, kc = 2, and 50% similarity of variants between
parents. (Since for false positive rate values > 0.02 no sig-
nificant information could be discerned, the false positive rate
axis was shortened in order to provide a more detailed view
of the curves.) We can clearly observe the improvement in
true predictions over false predictions obtained by the pro-



posed familially-constrained two-parent model (see the blue
curve in Fig. 3) over the two existing methods (i.e., regu-
lar constrained method and familially-constrained one-parent
method). Specifically, the child signal reconstruction is most
improved with our proposed method when the parent share
more variants in common. With regards to the parent signal
reconstructions, however, we did not observe this type of im-
provement in signal reconstruction.

3.2. 1000 Genomes Project Trio Data

We next applied our method to the previously sequenced
genomes of the father-mother–daughter CEU trio (NA12891,
NA12892, NA12878) and YRI trio (NA19238, NA19239,
NA19240) from the 1000 Genomes Project [1]. These
genomes were sequenced at low coverage (≈ 4×) in Pi-
lot 1 of the study and were aligned to NCBI36. To obtain
observations of possible variants, we used the GASV [13]
method on the 1000 Genomes Project data. We compared our
reconstructions against the reported validated set of low cov-
erage deletions longer than 250bp. Moreover, the validated
deletions were filtered by removing regions overlapping cen-
tromeres or telomores. Cases marked with LowQual for all
three individuals were also removed.

Analysis. In both trios, parents shared the majority of vali-
dated variants. Algorithm run time for reconstructing parent
and child signals on a commodity machine in MATLAB was
8.15 seconds and 6.81 seconds for CEU data and YRI data,
respectively. Figures 4 and 5 represent ROC plots depict-
ing true positives versus novel deletions since the validated
set of deletions may be incomplete. Thus, our method may
correctly identify true deletions not in the experimental vali-
dated set. The length of observations for each CEU genome
is n = 56, 840, and for each YRI genome, n = 51, 087. Both
Figures 4 and 5 illustrate improvement in identifying child
variants on the regularly constrained method, but also im-
proves on our one-parent familially-constrained model. Since
SV-detecting biological algorithms are already used to pro-
cess sequencing data, this method adds low computational
cost while improving the detection of variants in the child
signal. Moreover, predicting variants of large amounts of se-
quenced trios would be tractable with the proposed method.

4. CONCLUSIONS

We present a novel optimization method to detect SVs from
next-generation sequencing data. Our method employs relat-
edness between samples – specifically a child and both par-
ents – to improve the ability of signal reconstruction in the
presence of noisy genomic data. By enforcing both spar-
sity of SVs – that they are rare within the genome – and the
fact that any SV carried by a child must be present in one of
the two parents, we considerably improve the sensitivity and
specificity of detection on both simulated SV data and real
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Fig. 4: ROC curves illustrating the novel deletions (validated
set of deletions may be incomplete) vs. true positives in the
signal of the child data from the parent-child trio of the CEU
population studied in the 1000 Genomes Project Pilot 1. In
this trio, both parents shared 92.5% of variants in common
and τ = 5.
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Fig. 5: ROC curves illustrating the novel deletions (validated
set of deletions may be incomplete) vs. true positives in the
signal of the child data from the parent-child trio of the YRI
population studied in the 1000 Genomes Project Pilot 1. In
this data, both parents shared 89.96% of variants in common
and τ = 1.

sequencing data from the 1000 Genomes Project. Our work
suggests that the high-false positive rate of prediction suffered
by most traditional SV algorithms can be considerably im-
proved by enforcing the relatedness of individuals sampled in
large-sequencing studies.
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