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ABSTRACT
As an emerging near-infrared molecular imaging modality,
fluorescence molecular tomography (FMT) has great poten-
tial in resolving the molecular and cellular processes in 3D
objects through the reconstruction of the injected fluorescence
probe concentration. In practice, when a charge-coupled de-
vice (CCD) camera is used to obtain FMT measurements, the
observations are corrupted by noise which follows a Poisson
distribution. To reconstruct the original concentration, the
standard least-squares function for data-fitting is not a suitable
objective function to minimize since this model assumes mea-
surement noise which follows a Gaussian distribution. Rather,
in this paper, we minimize a negative log-likelihood func-
tion to more accurately model the CCD camera shot noise.
Furthermore, we exploit the presence of the flourescence in
only small regions of the 3D object by introducing a non-
convex penalty term that promotes sparsity in the reconstruc-
tion. This paper proposes a method to solve the FMT recon-
struction problem from low-dimensional and low-mean pho-
ton count measurements. Using simulated data, we validate
the effectiveness of the proposed non-convex Poisson-based
reconstruction method for FMT inverse problems.

Index Terms— Fluorescence molecular tomography,
non-convex optimization, Poisson observations, sparse re-
construction, `p-norm

1. INTRODUCTION

Fluorescence molecular tomography (FMT) is a promising
noninvasive functional imaging technique due to the high
availability of fluorescent dyes, high sensitivity of imaging
and low instrumental cost [1]. FMT has been widely used for
comprehensive investigation of molecular level activities in
cancer detection, development of new drugs, visualization of
gene expression and assessment of therapy [2, 3]. In FMT,
near-infrared laser beams excite the injected fluorescence
probe such as fluorophores within the object and then the
emitted fluorescent signals from the probe are captured by
a charge-coupled device (CCD) camera. In practice, those
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measurements are contaminated by noise which follows a
Poisson distribution [4]. When a sufficiently large number
of photons are collected at the detector end, the noise can be
modeled well by a Gaussian distribution. In this case, the in-
ternal fluorescence probe concentration is usually recovered
by minimizing the discrepancy between the boundary mea-
surements and the forward predictions using a least-squares
data-fitting term [5].

Since only the photon distribution over the tissue bound-
ary is measured by the CCD camera, FMT reconstruction
problem is often ill-posed. This is usually alleviated by ob-
taining a large number of measurement data. In addition,
the system matrix is ill-conditioned due to the high scatter-
ing and high absorption of the photons which leads to a very
unstable system [6]. In order to obtain a unique solution,
the FMT problem is often regularized using a Tikhonov (e.g.,
the `2-norm) regularization term. The `2-norm regularized
problem is simple and efficient to solve using gradient based
methods; however, the resulting solution is typically over-
smoothed with non-localized targets [7]. Since the target that
we would like to reconstruct is relatively small compared to
the entire reconstruction domain, the resulting reconstructed
signal should be sparse. With this prior knowledge, a sparse
solution can be achieved by incorporating the `0-norm con-
straint, which counts the number of non-zero entries in the
solution, to the original problem. Solving the `0-norm mini-
mization problem is NP-hard and computationally infeasible
for high-dimensional problems [8]. As a good approxima-
tion to the `0-norm, the convex `1-norm regularization has
been used to promote the sparsity of the solution [9]. How-
ever, the nonconvex `p-norm (0 ≤ p < 1) regularization has
been shown to provide a sparser solution in FMT imaging
[10]. Very recently, a nonuniform weighting method in com-
bination with `1 regularization for FMT was proposed in [11],
which was shown to outperform the method in [10] that was
based on a uniform weighting scheme.

Almost all of the aforementioned results assumed Gaussian-
type noises and are based on the least-square model. In the
rare cases where the Poisson noise was considered in solv-
ing the FMT problem, such as in a recent work of Yu [12],
the least-squares model was still used as objective function.
In this paper, based on [13, 14], we propose to solve the



ill-posed, ill-conditioned FMT reconstruction problem only
using a relatively small number of observations with Poisson
noise. Using simulated FMT data with different Poisson noise
levels, we compare the performance of the proposed method
with the newest Gaussian-based Non-Uniform Multiplicative
weighting with Ordered Subsets (NUMOS) algorithm [11]
with respect to different image quality metrics.

2. RECONSTRUCTION METHODOLOGY

In an FMT imaging system, the propagation of both excitation
photons and fluorescence emission photons in scattering me-
dia such as tissues is usually approximated by the diffusion
equation, which can be solved by the finite element method
(FEM), leading to a simple linear system of equations [5, 15]:
Af = y. Since the arrival of photons at the detector end
has low photon count which follows a Poisson process model
[16], the measurement can be better modeled as follows

y ∼ Poisson(Af∗),

where y ∈ Zm
+ is a vector of measured photon counts, f∗ ∈

Rn
+ is the true signal of interest, and A ∈ Rm×n

+ is the sys-
tem matrix. The unknown Poisson parameter Af∗ is deter-
mined by the maximum likelihood principle. In this section,
we briefly describe the Poisson-based and Gaussian-based al-
gorithms that we use to reconstruct the signal f∗ from low-
dimensional FMT observations y.

2.1. Poisson-based reconstruction methods

In general, the Poisson intensity reconstruction problem has
the form:

minimize
f∈Rn

Φ(f) ≡ F (f) + τ pen(f) (1)

subject to f � 0,

where τ > 0, F (f) is the negative Poisson log-likelihood
function

F (f) = 1TAf −
m∑
i=1

yi log(eTi Af + β),

where 1 is an m-vector of ones, ei is the ith canonical basis
unit vector, β > 0 (typically β � 1) and pen : Rn −→ R
is a penalty function [17]. In [13], the optimal solution of (1)
is obtained by minimizing a sequence of quadratic surrogate
functions for F (f), where the Hessian is replaced by a scaled
identity matrix. This approximation can be simplified to a
subproblem of the form

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
pen(f) (2)

subject to f � 0,

where

sk = fk − 1

αk
∇F (fk) and αk > 0.

By replacing the penalty term pen(f) in (2) by ‖f‖1 and ‖f‖pp,
we can obtain the Sparse Poisson Intensity Reconstruction
ALgorithm (SPIRAL): SPIRAL-`1 [13] and SPIRAL-`p [14]
constrained optimization subproblems, respectively.

If pen(f) = ‖f‖1 in (2), then the optimal solution to the
SPIRAL-`1 minimization subproblem (2) has the following
closed form solution:

fk+1 =

(
sk − τ

αk
1

)
+

,

where the operation (·)+ = max{0, ·} is component-wise.
If pen(f) = ‖f‖pp in (2), then the SPIRAL-`p minimiza-

tion subproblem (2) can be uncoupled into scalar minimiza-
tion problems of the form

f∗ = arg min
f∈R

Ω(f) =
1

2
(f − s)2 + λ|f |p, (3)

where f and s are general elements of the vectors f and sk

respectively and λ = τ/αk. The optimal solution of the scalar
minimization problem (3) is given by the generalized soft-
thresholding [18] function

f∗ =

{
0, if |s| ≤ γp(λ)
sgn(s)Sp(|s|, λ), if |s| > γp(λ),

where the threshold value γp(λ) is computed by

γp(λ) = (2λ(1− p))
1

2−p + λp(2λ(1− p))
p−1
2−p ,

and Sp(|s|, λ) is the appropriate root of the equation

Ω′(Sp(|s|, λ)) = Sp(|s|, λ)− s+ λp(Sp(|s|, λ))p−1 = 0.

(See [14] for details.)

2.2. Gaussian-based reconstruction methods

In [11], the NUMOS algorithm reconstructs an unknown sig-
nal f∗ by solving the `2−`1 constraint minimization problem:

f∗ = arg min
f�0

1

2
‖ Af − y ‖22 + τ‖f‖1. (4)

Similar to problem (2), the optimal solution to the problem
(4) is also obtained from an iterative updating of a series of
quadratic surrogate functions. The difference is that the sur-
rogate functions for NUMOS algorithm are constructed using
a nonuniform type of weighting scheme [11]. The next iterate
fk+1 is given by the following analytic formula, where the
vector multiplication and division are component-wise:

fk+1 = fk
(ATy − τ1)+

ATAfk
.



2.3. Image Quality Metrics

In order to compare the image qualities of the reconstruc-
tions obtained by the methods explained previously, we use
the same metrics used in [10, 11], which are listed below:

VR =
|rROI|
|ROI|

,

Dice =
2 ∗ |rROI ∩ ROI|
|rROI|+ |ROI|

,

CNR =
Mean(fROI)−Mean(fROB)√

ωROIVar(fROI) + (1− ωROI)Var(fROB)
,

MSE =
1

N

N∑
j=1

(fj − f∗j )2.

The Volume Ratio (VR) [19] measures the ratio between
the true region of interest (ROI) and the reconstructed region
of interest (rROI), where |·| denotes the number of elements of
the set, and the rROI contains the reconstructed signals with
amplitudes higher than half of the maximum amplitude of all
reconstructed signals. Ideally, VR should be close to 1. The
dice similarity coefficient (Dice) [20] measures the location
accuracy of the reconstructed target with respect to the true
location. In the ideal case, Dice should also be close to 1. The
Contrast-to-Noise Ratio (CNR) [21] measures how easy it is
to see the reconstructed target from the background, where
ωROI = |ROI|/(|ROI|+ |ROB|), ROB is the true background
region and f denotes the reconstructed signal. A high CNR
value means a high contrast between the reconstructed target
and the background, which is preferred. The Mean Square
Error (MSE) measures the difference between the approxi-
mation and the truth, where f∗ is the true signal.

3. NUMERICAL EXPERIMENTS

In this study, we simulated a 3D cubic phantom with two em-
bedded fluorescence capillary rod targets as shown in Fig.2.
For the FEM mesh, there are a total of 8,690 nodes inside
the 3D cube while only 36 nodes are located inside the two
rods. The fluorophore concentration of the nodes is set to
7,000 inside the two rods and 0 outside. We chose a total
of 20 excitation source positions and 1, 057 detector posi-
tions on the top surface of the cube, which gives us 20 ×
1,057 = 21,140 measurements. But we used only around
1/10 th of all the measurements (i.e. 2,120 measurements).
We assumed that the excitation wavelength is 650 nm and the
emission wavelength is 720 nm. The tissue optical proper-
ties were µa = 0.0022 mm−1, µ′s = 1.41 mm−1 at both 650
nm and at 720 nm. For this experiment, after the measure-
ment vector y is simulated, we added Poisson noises with
signal-to-noise ratios (SNR) of 20 dB (≈ 10% noise), 10
dB (≈ 30% noise) and 3 dB (≈ 57% noise), where noise

(%) = 100 · ‖Af∗ − y‖2/‖y‖2. Fig. 1 shows the true signal
(f∗), the noise free measurements (Af∗), and the observed
photon count vector y for the case SNR ≈ 3 dB.
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Fig. 1. Experimental setup. (a) True signal (f∗) of size 8,690
with 36 nonzero entries. (b) Noise free measurements (Af∗)
of size 2,120. (c) Very low mean photon count measurements
(y) with 57% Poisson noise (SNR ≈ 3 dB). Note that the
dimension of the measurement vector y is four times smaller
than the dimension of the true signal (f∗).

4. RESULTS

The reconstructed results for each method for different Pois-
son noise levels are shown in Table 1, and the corresponding
detailed image quality metrics are given in Table 2. When the
SNR is high (SNR≈ 20 dB or 10% noise), we can see that all
methods perform well. In general, NUMOS performs partic-
ularly well in obtaining more localized targets with high lo-
cation accuracy. For low SNR measurements (SNR ≈ 3 dB),
SPIRAL-`p method outperforms the NUMOS and SPIRAL-
`1 methods in obtaining locationally accurate targets with
more strength. In the 30% Poisson noise experiment (SNR
≈ 10 dB), even though both the SPIRAL-`1 and SPIRAL-
`p methods perform quite well with relatively close image
quality metrics, SPIRAL-`p image has very low background
artifacts. For the SNR ≈ 3 dB setting, on average, SPIRAL-
`p requires about 30 seconds for reconstruction, SPIRAL-`1
requires 15 seconds, and NUMOS requires 3 seconds.

5. CONCLUSION

We proposed an approach for solving the FMT inverse prob-
lem when the observations are low-dimensional and are cor-
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Table 1. Reconstructed horizontal slice images of the simulated cube using SPIRAL-`1, SPIRAL-`p(p = 0.74) and NUMOS
method: (a) when SNR ≈ 3 dB (57% Poisson noise), (b) when SNR ≈ 10 dB (30% Poisson noise), and (c) when SNR ≈ 20
dB (10% Poisson noise).

SNR Algorithm VR Dice CNR MSE

≈ 3 dB
SPIRAL-`1 0.95 0.30 7.40 9.1 × 104

SPIRAL−`p 1.10 0.35 7.90 8.8 × 104

NUMOS 1.10 0.32 7.20 9.3 × 104

≈ 10 dB
SPIRAL-`1 1.01 0.43 10 7.0 × 104

SPIRAL−`p 0.98 0.47 10 7.8 × 104

NUMOS 0.94 0.42 8.70 8.3 × 104

≈ 20 dB
SPIRAL-`1 0.73 0.61 16 3.8 × 104

SPIRAL-`p 1.01 0.61 12 5.5 × 104

NUMOS 0.94 0.63 14 4.5 × 104

Table 2. Metrics of the best reconstructions under differ-
ent SNR levels (≈ 3 dB, 10 dB, 20 dB) using SPIRAL-`1,
SPIRAL-`p (p = 0.74), and NUMOS algorithms. In the best
case, VR and Dice metrics have to be close to 1 and the larger
CNR is the better. Those best selections are in boldface let-
ters.
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Fig. 2. The true image of the simulated cube.

rupted by Poisson noise. We assessed the performance of this
approach on a simulated FMT cube and compared it to re-
cently developed methods. According to the image quality
metrics, we have shown that the nonconvex Poisson noise-
based reconstruction method (SPIRAL-`p) is particularly ef-
fective in low SNR settings. In near future, we will val-
idate the effectiveness of the SPIRAL-`p method for low-
dimensional actual phantom data in Poisson context.
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