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ABSTRACT

Critical to accurate reconstruction of sparse signals from
low-dimensional low-photon count observations is the so-
lution of nonlinear optimization problems that promote
sparse solutions. In this paper, we explore recovering
high-resolution sparse signals from low-resolution mea-
surements corrupted by Poisson noise using a gradient-
based optimization approach with non-convex regular-
ization. In particular, we analyze zero-finding methods
for solving the p-norm regularized minimization subprob-
lems arising from a sequential quadratic approach. Nu-
merical results from fluorescence molecular tomography
are presented.

Index Terms— Photon-limited imaging, non-
convex optimization, sparse reconstruction, `p-norm,
fluorescence molecular tomography

1. INTRODUCTION

Photon-limited data observations generally follow a Pois-
son distribution with a certain mean detector photon in-
tensity, i.e.,

y ∼ Poisson(Af∗),

where y ∈ Zm+ is a vector of observed photon counts, f∗ ∈
Rn+ is the vector of true signal intensity, and A ∈ Rm×n+

is the system matrix that linearly projects the true signal
to the detector photon intensity [1].

The Poisson reconstruction problem has the following
constrained optimization form:

minimize
f∈Rn

Φ(f) ≡ F (f) + τ pen(f)

subject to f � 0, (1)

where F (f) is the negative Poisson log-likelihood func-
tion F (f) = 1TAf −

∑m
i=1 yi log(eTiAf + β), where 1 is

the m-vector of ones, ei is the i-th column of the m×m
identity matrix, β > 0 (typically β � 1), pen : Rn → R
is a sparsity-promoting penalty functional, and τ > 0 is
a regularization parameter.
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Various convex penalty techniques have previously
been used as regularization terms in (1). For example,
when the solution is sparse in the canonical basis, an `1
norm is simple to implement [2, 3]. A total variation
seminorm with a split Bregman approach can also be
used [4, 5]. Other related methods include [6, 7, 8, 9].
In this work, we consider the non-convex penalty func-
tion pen(f) = ‖f‖pp =

∑n
i=1 |fi|p (0 ≤ p < 1) in (1) as

a bridge between the convex `1 norm and the `0 count-
ing seminorm [10, 11, 12]. The solution to this non-
convex problem can be found by minimizing a sequence
of quadratic models to the function F (f) approximated
by second-order Taylor series expansion where the Hes-
sian replaced by a scaled identity matrix αkI with αk > 0
[13, 14, 15]. Simplifying the second-order approximation
yields a sequence of subproblems of the form

fk+1 = arg min
f∈Rn

1

2
‖ f − sk ‖22 +

τ

αk
‖ f ‖pp

subject to f � 0, (2)

where sk = fk − 1
αk
∇F (fk). Note that the subproblem

(2) can be separated into scalar minimization problems
of the form

f∗s = arg min
f∈R

Ωs(f) =
1

2
(f − s)2 + λ|f |p,

subject to f ≥ 0. (3)

where f and s denote elements of the vectors f and sk

respectively and λ = τ/αk [16].
Given a regularization parameter λ > 0 and p-norm

for Ωs(f) in (3), there exists a threshold value γp(λ) (that
explicitly depends on p and λ) such that if s ≤ γp(λ), the
global minimum of (3) is f∗s = 0; otherwise, the global
minimum will be a non-zero value (see Fig. 1). When
s = γp(λ), there exists f∗γ such that

Ωγ(f∗γ ) = Ωγ(0) and Ω′γ(f∗γ ) = 0. (4)

By solving (4) simultaneously, we can explicitly find the
threshold value γp(λ) for given p and λ values. Specifi-

cally, γp(λ) is given by γp(λ) = (2λ(1−p))
1

2−p +λp(2λ(1−
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Fig. 1. The plot of the scalar quadratic function Ωs(f),
where p = 0.5 and λ = 1.0. (a) When s is less than the
specific threshold value γp(λ), then f∗s = 0 is the unique
global minimum. (b) When s = γp(λ), there are global
minima at f∗ = 0 and f∗γ . If s > γp(λ), then the global
minimum is uniquely at some f∗s > 0.

p))
p−1
2−p (see [17] for details). For any s > γp(λ), the

unique minimum f∗s of Ωs(f) is greater than 0 and is
obtained by setting Ω′s to 0:

Ω′s(f
∗
s ) = f∗s − s+ λp(f∗s )p−1 = 0. (5)

We now describe zero-finding algorithms to compute the
root f∗s . To our knowledge, this work is the first careful
analysis of these minimization techniques for solving the
non-convex quadratic subproblem given by (3).

2. ZERO-FINDING METHODS

2.1. Fixed-Point Iteration Method

A point f∗ is said to be a fixed point of a function G(f)
if G(f∗) = f∗. Setting Ω′s(f) equal to zero, we have
s− λp(f∗)p−1 = f∗. The fixed-point iteration method is
an iterative method for finding fixed points of a function.
In particular, it defines a sequence of points {fn} given
by fn+1 = G(fn). Previous methods for finding the root
of Ω′s(f) use the fixed point iteration (see, e.g., [16, 17]):

fn+1 = g(fn) = s− λpfp−1
n . (6)

2.2. Newton’s Method

Note that there are various ways of defining fixed point it-
erations. One particular fixed-point formulation is New-
ton’s method, which is given by the iterations

fn+1 = G(fn) = fn −
Ω′s(fn)

Ω′′s (fn)
.

In our case, the iterations for Newton’s method are given
by

fn+1 = fn −
fn − s+ λpfp−1

n

1 + λp(p− 1)fp−2
n

=
s+ λp(p− 2)fp−1

n

1 + λp(p− 1)fp−2
n

.

In order to simplify the computation of this iteration and
avoid computing two different roots fp−1

n and fp−2
n , we

multiply the numerator and denominator by f2−p
n :

fn+1 =
sf2−p
n + λp(p− 2)fn

f2−p
n + λp(p− 1)

. (7)

The performance of fixed-point iteration and Newton’s
method very much depend on the choice of the initial
point f0, which we discuss next.

2.3. Initialization

When s = γp(λ), the solution f∗γ such that Ω′(f∗γ ) =
f∗γ − γp(λ) + λp(f∗γ )p−1 = 0 is given explicitly by

f∗γ = (2λ(1− p))
1

2−p .

Then if s = γp(λ) + ε for some ε > 0, we now analyze
how to estimate f∗s to initialize the zero-finding methods
described previously.

First-order Taylor series approximation. To define
the initial point, we can linearize Ω′s(f) around f∗γ and
find the zero of the linearization. More specifically,

Ω′s(f
∗
γ + δ) ≈ Ω′s(f

∗
γ ) + δΩ′′s (f∗γ )

= f∗γ − (γp(λ) + ε) + λp(f∗γ )p−1

+ δ(1 + λp(p− 1)(f∗γ )p−2)

= −ε+ δ(1 + λp(p− 1)(f∗γ )p−2).

Setting this equal to zero and solving for δ suggests the
use of the initialization

f0
s = f∗γ + δ, where δ =

ε

1 + λp(p− 1)(f∗γ )p−2
.

Second-order Taylor series approximation. Simi-
larly, we can use a second-order Taylor approximation to
Ω′s around f∗γ :

Ω′s(f
∗
γ + δ) ≈ Ω′s(f

∗
γ ) + δΩ′′s (f∗γ ) +

δ

2
Ω′′′s (f∗γ ),

which yields the following approximation:

f0
s = f∗γ + δ, where δ =

−b+
√
b2 − 4ac

2a
,

where a = λp(p−1)(p−2)
2 (f∗γ )p−3, b = 1+λp(p−1)(f∗γ )p−2,

and c = −ε.
The linearization and second-order Taylor approxi-

mation, however, diverge quickly from the true solution
as f∗s becomes large (see Fig. 2). We now discuss bounds
on f∗s that allow us to make more effective initial approx-
imations to f∗s . We first prove a lemma, which will be
useful in showing bounds on f∗s as well as other results.
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Fig. 2. Approximations to Ω′γ(f) centered at f∗γ . As f
increases, both the linear and quadratic Taylor approxi-
mation diverge from Ω′γ(f). In contrast, the approxima-
tion `(f) = f−s, which are the first two terms in Ω′γ(f),
is more accurate for large values of f .

Lemma 1. Let λ > 0 and 0 ≤ p < 1. Then for s ≥
γp(λ), λp(1− p)(f∗s )p−2 ≤ p

2 .

Proof. Recall that for s = γp(λ), there exists an f∗γ > 0
such that (4) hold. From Ωγ(f∗γ ) = Ωγ(0), we can obtain

1

2
f∗γ + λ(f∗γ )p−1 = γp(λ), (8)

and from Ω′γ(f∗γ ) = 0, we have

f∗γ + λp(f∗γ )p−1 = γp(λ). (9)

Setting (8) equal to (9) and with some algebraic manip-
ulation, we have λp(1 − p)(f∗γ )p−2 = p

2 . For s > γp(λ),
the unique minimizer f∗s > f∗γ . Thus,

λp(1− p)(f∗s )p−2 < λp(1− p)(f∗γ )p−2 =
p

2
,

which completes the proof.

This result allows us to prove the following theorem,
which bounds the minimizer, f∗s , of Ωs(f):

Theorem 1. For λ > 0 and 0 ≤ p < 1, the minimizer,
f∗s , of Ωs is bounded by f∗s ≤ s. If 0 ≤ p ≤ 1

2 , then the
minimizer is further bounded by 2

3s ≤ f
∗
s ≤ s.

Proof. Recall that the minimizer of Ωs solves Ω′s(f
∗
s ) =

0. Solving for f∗s , we have

f∗s =
s

1 + λp(f∗s )p−2
. (10)

Rewriting the main result of Lemma 1, we obtain
λp(f∗s )p−2 ≤ p

2(1−p) . Observe that if p ≤ 1
2 ,

λp(f∗s )p−2 ≤ p

2(1− p)
≤ 1

2
and 1 ≤ 1+λp(f∗s )p−2 ≤ 3

2
.

Using these bounds in (10) yields the desired results.

Note that Theorem 1 implies that as s increases, so does
f∗s . Moreover, as s→∞, (f∗s )p−2 → 0, and therefore, by
(5), f∗s → s. Thus, a sensible initial estimate for f∗s is s.

Fixed-point initialized Newton’s Method. We can
improve the initial guess from s by finding a point be-
tween f∗s and s. The mean-value theorem guarantees the

existence of ξ ∈ (f∗s , s) such that Ω′′s (ξ) =
Ω′s(s)−Ω′s(f∗s )

s−f∗s
.

Rearranging, we find that

f∗s = s− Ω′s(s)− Ω′s(f
∗
s )

Ω′′s (ξ)
= s− λpsp−1

1− λp(1− p)ξp−2
.

By Lemma 1, 2−p
2 ≤ 1− λp(1− p)ξp−2 ≤ 1, and thus,

f∗s ≈ s− λpsp−1 ∈ (f∗, s).

We note that this is precisely the first fixed point itera-
tion initialized at s.

2.4. Convergence

Guarantee of convergence. Let en = fn − f∗ and
en+1 = fn+1 − f∗ represent the errors on the n-th and
n+1-th iterations respectively. For fixed point iteration,
we have

en+1 = fn+1 − f∗ = G(fn)− f∗

= G(f∗ + en)− f∗,
= G(f∗) + enG

′(f∗) + e2
nG
′′(ξ)− f∗

= f∗ + enG
′(f∗) + e2

nG
′′(ξ)− f∗

= enG
′(f∗) + e2

nG
′′(ξ).

For small en, en+1 ≈ enG′(f∗). In our context,

G(f) = s− λpfp−1 and G′(f) = λp(1− p)fp−2.

By Lemma 1, G′(f) < 1. Therefore, the error is decreas-
ing and the fixed point iteration method is guaranteed
to converge.

To show Newton’s method is guaranteed to converge,
let fc be a critical point of Ω′s(f) i.e. Ω′′s (fc) = 0. In

particular, fc = (λp(1 − p))
1

2−p and for any f > fc,
Ω′′s (f) = 1 + λp(p − 1)fp−2 > 0 i.e. Ω′s(f) is increasing
in the interval (fc,∞). Then, Ω′′′s (f) = λp(p − 1)(p −
2)fp−3 > 0 for all f ∈ (0,∞), which implies Ω′s(f) is

convex. Finally, we note that fc < (2λp(p − 1))
1

2−p =
f∗γ ≤ f∗, i.e Ω′s(f) has a root in (fc,∞). Therefore,
Ω′s(f) is increasing, convex, and has a zero in (fc,∞),
and Newton’s method is guaranteed to converge from
any starting point in the interval (fc,∞) (see Theorem
2 pg. 86 in [18]).

Rate of convergence. Let ε be some set tolerance such
that on the n-th iteration if |en| = |fn− f∗s | ≤ ε then we



will consider the algorithm to have converged to the root.
For fixed point iteration, we have convergence when

ε ≥ |en| = C1|en−1| = Cn1 |e0| (11)

where C1 = G′(f∗s ) = λp(1 − p)(f∗s )p−2. Solving for n,
the number of iterations required to converge, we have

nFixed Point ≥
ln ε− ln |e0|

lnC1
. (12)

For Newton’s method, we have convergence when

ε ≥ |en| = C2|en−1|2 = C2n−1
2 |e0|2

n

(13)

where C2 =
1

2

λp(1− p)(2− p)(f∗s )p−3

1− λp(1− p)(f∗s )p−2
. Solving for n in

(13) yields

nNewton ≥
1

ln 2
ln

(
lnC2 + ln ε

lnC2 + ln e0

)
. (14)

Fig. 3 shows the theoretical number of iterations for
fixed-point iterations and Newton’s method to converge.
Note that when s is near γp(λ), fixed-point iterations
take many more iterations than Newton’s method. How-
ever, for large s, fixed-point iterations only require four
iterations. Although this is still twice as many as the iter-
ations for Newton’s method, the number of floating point
operations for fixed-point iterations is much smaller than
that for Newton’s method (compare (6) and (7)). Since
s can take on any real value, we expect the average per-
formance of fixed-point iteration and Newton’s method
will be comparable, which we see in the next section.

Fig. 3. Theoretical number of iterations required to con-
verge as a function of s. Here p = 0.5, λ = 1, ε = 10−8,
e0 = s− f∗, and γp(λ) ≤ s ≤ 11 .

3. NUMERCAL EXPERIMENTS

We simulated a 3D cubic phantom with two embedded
fluorescence capillary rod targets (see e.g., [19, 20]). For
the finite element mesh, there are a total of 8,690 nodes
inside the 3D cube while only 36 nodes are located inside
the two rods. The fluorophore concentration of the nodes

is set to 7,000 inside the two rods and 0 outside. We chose
a total of 20 excitation source positions and 1,057 detec-
tor positions on the top surface of the cube, which gives
us 20× 1,057 = 21,140 measurements. About one-tenth
of all the measurements were used (i.e. 2,120 measure-
ments). We assumed that the excitation wavelength is
650 nm and the emission wavelength is 720 nm in the
construction of the system matrix A. The tissue optical
properties were µa = 0.0022 mm−1, µ′s = 1.41 mm−1 at
both 650 nm and at 720 nm. For this experiment, the
simulated measurement vector y is corrupted by Poisson
noise with signal-to-noise ratio (SNR) of 3 dB (≈ 57%
noise). In our method, we used p = 0.74 and ATy as the
initial guess. Fig. 4 shows the true signal (f∗) and our
reconstruction.

Time (sec) Iterations
Fixed-point iteration 21.2829 1,281,974

Newton’s method 21.0128 476,585

Table 1. Time and iteration average over 10 trials for
fixed-point iteration and Newton’s method to reconstruct
the fluorescence molecular tomography data.
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Fig. 4. (a) Horizontal slices of a simulated fluorescence
capillary rod targets. (b) Reconstruction using p-norm
regularized subproblem minimization.

4. CONCLUDING REMARKS

In this paper, we analyzed methods for solving the
p-norm regularized subproblems arising from minimiz-
ing the Poisson-log likelihood for reconstructing sparse
signals from photon-limited measurements. These non-
convex subproblems do not have closed form solutions,
and as such, they require numerical approaches for
computing the minimizers. While Newton’s method in
theory should converge to the solution faster than fixed-
point iterations, the number of floating-point operations
needed to perform each iteration offsets the computa-
tional advantage of using derivative information.
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