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ABSTRACT

We present a novel, three-stage method to solve the fluores-
cence lifetime imaging problem under low-photon conditions.
In particular, we reconstruct the fluorophore concentration
along with its support and fluorescence lifetime from the
time-dependent measurements of scattered light exiting the
domain. Because detectors used for these problems are pho-
ton counting devices, measurements are corrupted by Poisson
noise. Consequently, we explicitly consider Poisson noise
in conjunction with SPIRAL-`p – a sparsity-promoting non-
convex optimization method – to solve this problem. We
demonstrate the effectiveness of the proposed three-stage
method through numerical experiments in 2D fluorescence
lifetime imaging.

Index Terms— Fluorescence lifetime imaging (FLIM),
photon-limited imaging, Poisson noise, sparse reconstruction,
SPIRAL-`p

1. INTRODUCTION

Fluorescence microscopy provides the ability to study in vivo
cellular and molecular dynamics in real time, because of its
sensitivity, specificity, and versatility [1]. In particular, fluo-
rescence lifetime imaging (FLIM) is becoming increasingly
important. The lifetime of a fluorophore provides useful in-
formation about the local environment (pH, ion, or oxygen
concentration), but not on the local fluorophore concentration
or absorption in the sample, etc [1, 2].

In fluorescence lifetime imaging, one seeks to recon-
struct the spatial distribution of the fluorescence decay rates
within the tissue sample. Typically, this spatial distribu-
tion is sparse. Consequently, there have been several recent
studies that employed sparsity-promoting methods to solve
this FLIM problem. However, these methods minimize the
least-squares cost functional with Gaussian noise, e.g. [3, 4].
Implicitly, these studies assume that there is enough signal
in the measurements made by photon counting detectors that
Gaussian noise is a valid assumption. In contrast, we con-
sider here time-dependent measurements with relatively low
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photon counts. For that case, we must consider measure-
ments corrupted by Poisson noise [5]. To do so, we use the
nonconvex Sparse Poisson Intensity Reconstruction ALgo-
rithm (SPIRAL-`p) [6] to minimize the `p-norm penalized
negative Poisson log-likelihood function. We show that this
approach applied to the time-averaged data provides an ef-
fective method for reconstructing the spatial support of the
fluorophores. Upon determining these supports, we recover
the fluorescence decay rates from the time-dependent data.
Using numerical simulations, we show that this reconstruc-
tion method effectively solves this time-dependent FLIM
problem.

2. PROBLEM FORMULATION

For the fluorescence-lifetime imaging problem, we seek to
reconstruct the fluorophore concentration along with the
support and fluorescence-lifetime from the time-dependent
measurements of emitted light due to pulsed excitation of
a strongly scattering medium. We assume that the optical
properties of the medium are known to reasonable precision.
In what follows, we describe the forward model and then the
corresponding inverse problem for this fluorescence-lifetime
imaging problem.

Forward model: Let Ω denote the domain with boundary
∂Ω. A pulse of exciting light is injected into Ω on ∂Ω. Let
S(r, t) for r ∈ ∂Ω and t > 0 denote that exterior time-
dependent source of exciting light. Let Ie(r, t) denotes the
intensity of this exciting light source at position r ∈ Ω at time
t ∈ [0, T ]. It is governed by the following initial-boundary
value problem for the diffusion approximation [7, 8]:

1

c

∂Ie

∂t
−∇ · (κe∇Ie) + µeaI

e = 0 in Ω× (0, T ], (1)

with κe denoting the diffusion coefficient and µea denoting the
absorption coefficient at the exciting wavelength. We solve
(1) subject to initial condition

Ie(r, 0) = 0 in Ω, (2)

and boundary condition

Ie + αeκe
∂Ie

∂n
=

{
γeS(r, t) on r ∈ rs

0 on r ∈ ∂Ω\rs
(3)



Here, ∂Ie/∂n denotes the outward normal derivative of Ie,
constants αe and γe are defined in terms of µea and κe as part
of the diffusion approximation and rs denotes the source lo-
cation at the boundary.

Next, we consider that a portion of Ie is absorbed by the
fluorophores and re-emitted. The transportation of emitted
light If is then modeled by

1

c

∂If

∂t
−∇·(κf∇If )+µfaI

f = Q(r, t) in Ω× (0, T ], (4)

with κf denoting the diffusion coefficient and µfa denoting
the absorption coefficient at the exciting wavelength. Here,
the emission of fluorescent light is due to the excited interior
source [5],

Q(r, t) = χ(r)h(r)

∫ t

0

e−(t−t
′)/τ(r)Ie(r, t′)dt′, (5)

where χ(r) is the indicator function, h(r) is the fluorophore
concentration, and τ(r) is the fluorescence-lifetime. We solve
(4) subject to initial condition

If (r, 0) = 0 in Ω, (6)

and boundary condition

If + αfκf
∂If

∂n
= 0 on ∂Ω. (7)

Upon solution of the initial-boundary value problem for emis-
sion light consisisting of (4) subject to (6) and (7), we model
measurements of scattered light leaving the boundary of the
medium, u(r, t), through evaluation of

u(r, t) = −κf ∂I
f

∂n
=

1

αf
If on ∂Ω× (0, T ]. (8)

Note that we have substituted (7) into the first result of (8) to
obtain the final result of (8).

Suppose we consider the time-averaged data defined as

ū(r) =
1

αf
Īf (r) =

1

αfT

∫ T

0

If (r, t)dt on ∂Ω. (9)

The steady-state optical fluence rate for emission light, Īf ,
satisfies the steady-state diffusion equation

−κf∇2Īf + µaĪ
f = Q̄ in Ω, (10)

subject to the boundary condition

Īf + αfκf∂nĪ
f = 0 on ∂Ω. (11)

We will make use of this boundary value problem consisting
of (10) subject to (11) in the analysis that follows.

Inverse problem: The measurements of the scattered light
leaving the boundary of the medium are taken at M dis-
tinct locations denoted by rm ∈ ∂Ω for m = 1, · · · ,M .

Moreover, N samples of these measurements in time are col-
lected with sampling rate, ∆t with T = N∆t. The observed
collection of data is given by the vector u ∈ RMN with
u = [u(r1, t1), · · · , u(rM , t1), u(r1, t2), · · · , u(rM , tN )].
Because these measurements have relatively low photon
counts, we model the noise in the data using Poisson statistics.

The inverse problem seeks to reconstruct the sparse spa-
tial distribution of fluorescence lifetime appearing in (5) from
the set of noisy measurements in u. We assume that the fluo-
rophores are concentrated only in a small area. Furthermore,
we assume that the optical properties of the medium for ex-
citation and emission are known, i.e., κe, κf , µea, and µfa are
known. Therefore, this inverse problem is linear. However,
the problem is ill-posed. Hence, we include a regularization
term that promotes sparsity in the solution. We propose the
following three-stage method for reconstructing the fluores-
cence sources:

Step 1: Assuming a sparse distribution of fluorescence
sources that does not change over [0, T ], we apply SPIRAL-
`p [6], a nonconvex, sparsity promoting optimization method,
to determine the spatial support, χ(r) of the sources from
the time-averaged data in (9). (We describe the SPIRAL-`p
method in the next section.)

Step 2: Using the determined support χ(r) of the sources
from Step 1, we apply SPIRAL-`1 [9] to determin Q(r, t)
from the time-dependent measurements. Since we have iden-
tified the support in Step 1 and therefore no longer need to
promote sparsity in the solution, we use SPIRAL-`1 with a
negligible regularization penalty parameter.

Step 3: Using χ(r) and Q(r, t) from Steps 1 and 2, we ap-
ply a nonlinear least squares solver to recover the fluorophore
concentration h(r) and the lifetime τ(r) from (5).

Related methods: Previous work for solving Poisson in-
verse problems include statistical multiscale modeling and
analysis frameworks [10], nonparametric estimators using
wavelet decompositions [11], and combination expectation-
maximization algorithms with a total variation-based reg-
ularization [12]. Our proposed approach uses a sequence
of separable approximations to the objective function with
non-convex p-norm regularization to identify the support of
the time-dependent fluorescence sources and to recover their
lifetime parameters.

3. METHODOLOGY

Finite difference discretization: Both initial-boundary value
problems (1) and (4) subject to the initial and boundary con-
ditions ((2), (3) and (6), (7) respectively) are solved using the
Crank-Nicolson method [13]. As defined in (8), in the dis-
crete setting, the measurements are obtained by restricting the
numerical solution of emission light, say V, to the boundary:

u =
1

αf
RV =

1

αf
RL−1Q̃, (12)



where R is a boundary restriction operator, L is the finite dif-
ference operator and Q̃ is averaged Q between consecutive
time steps. More over, 1

αf RL−1 is defined as the system ma-
trix A for the inverse algorithm. Instead of generating the
system matrix A explicitly, we compute the action A(x) and
AT (x) on-the-fly using the forward and backward substitu-
tion techniques. Similarly, actions of the steady-state bound-
ary value problem in (10) and (11) also have to be constructed
in a similar technique.

Poisson intensity reconstruction: The arrival of photons at a
detector is typically modeled by a Poisson noise model [14],
y ∼ Poisson(Af∗), where y ∈ Zm+ is the vector of observed
photon counts, f∗ ∈ Rn+ is the vector of true signal intensity,
and A ∈ Rm×n+ is the system matrix. The negative Poisson
log-likelihood function corresponding to observing y given
Af is given by

F (f) = 1TAf −
m∑
i=1

yi log(eTiAf), (13)

where 1 is the m-vector of ones and ei is the i-th column of
the m×m identity matrix. A small parameter ε > 0 is often
added within the log term in (13) to avoid singularity when
f = 0 [15].

We formulate our Poisson reconstruction problem as the
following constrained optimization problem:

f̂ = arg min
f∈Rn

Φ(f) ≡ F (f) + β ‖f‖pp

subject to f � 0. (14)

where ‖f‖pp (0 ≤ p < 1) is a penalty function that promotes
sparsity in our solution and β > 0 is a scalar regularization
parameter. The nonnegativity constraint on f ensures that the
solution, which corresponds to the fluorescence sources, is
nonnegative. Our optimization problem formulation is differ-
ent from the more commonly used least-squares minimiza-
tion problem [5] in three ways: (1) instead of a least-squares
data-fidelity term, we use a negative log-likelihood function
to model the noise statistics more accurately; (2) instead of
a Tikhonov regularization or a sparsity-promoting `1-norm,
we use a non-convex p-norm, where 0 ≤ p < 1, to bridge
the convex `1-norm and the `0 counting semi-norm; and (3)
we enforce a nonnegativity constraint on our solution. We
solve the minimization problem (14) using the SPIRAL-`p
approach (see [6, 16, 17] for further details).

4. NUMERICAL EXPERIMENTS

In this section, we apply the proposed three-stage reconstruc-
tion method for 2D fluorescence lifetime imaging problems.
For the MATLAB simulations, we used a unit square domain
Ω = (0, 1) × (0, 1) with the following non-dimensionalized
optical properties: the absorption coefficient µa = 0.05 and

the diffusion coefficient κ = 0.0476 [3]. For all experiments,
N = 200 time-level samples from M = 72 boundary de-
tectors with sampling rate ∆t = 0.05 are colloected using 5
exterior near-infrared source points. Also, the fluorescence-
lifetime and the fluorophore concentration are set to 5.7 and
2000, respectively [18]. The simulated boundary measure-
ments are corrupted by Poisson noise using the MATLAB’s
poissrnd function. The noise level (%) is computed as
100 · ‖Af∗ − y‖2/‖y‖2. The SPIRAL-`p and SPIRAL-`1
algorithms in stage (1) and (2) are initialized using ATy and
terminate if the relative objective values do not significantly
change, i.e., |Φ(f

k+1
) − Φ(f

k
)|/|Φ(f

k
)| ≤ 10−7. The reg-

ularization parameters (β) for both experiments are manu-
ally optimized to get the minimum RMSE (RMSE (%) =

100 · ‖f̂ − f∗‖2/‖f∗‖2, where f̂ is an estimate of f∗).
In this paper, we consider two experiments. Experiment

1 consists of a fluorescence reconstruction problem with two
fluorophore point sources (see Fig. 1(a)) while Experiment 2
consists of two islands of fluorophore sources (see Fig. 5(a))
The observations u are time dependent and are corrupted by
Poisson noise (see e.g., Fig. 2(a)). Step 1 of our proposed
method uses the time-averaged measurements ū (see e.g., Fig.
2(b)) to obtain an estimate for the support of the fluorophores
for all 5 exterior sources (see e.g., Fig. 3). The final recon-
structed support of the fluorophores is obtained by threshold-
ing and computing the mode of the SPIRAL-`p reconstruc-
tion since the location of the fluorophores must be the same
for each source (see Figs. 1(b) and 5(b)). Then given the es-
timated support from Step 1, in Step 2 we reconstructed Q̃
in (12) using SPIRAL-`1 with negligible regularization since
we already identified the support and no longer need to pro-
mote sparsity in the solution (see e.g., Fig. 4). In Step 3,
we used the built-in Matlab nonlinear least-squares command
lsqnonlin to compute the estimate ĥ at the two source lo-
cations using the initial concentration value ĥ0 = 1.0 for both
locations and initial fluorescence lifetime value τ̂0 = 1.0. Re-
sults are presented in Tables 1 and 2.

5. CONCLUSION

In this paper, we proposed a novel three-stage method to
solve the fluorescence lifetime imaging problem from Pois-
son noise corrupted boundary measurements. For this imag-
ing problem, measured signals are modeled by solutions of
a coupled initial-boundary value problem for light scatter-
ing and absorption inside the sample. Furthermore, unlike
previous methods, Poisson noise is explicitly modeled in the
inverse problem and a nonconvex sparse recovery method
(SPIRAL-`p) is used to determine the support of the fluo-
rophores. Numerical experiments for small scale problems
demonstrate that the proposed method accurately solves the
FLIM problem. Future work will include larger-scale real
data studies with different optical properties (i.e., absorption
and diffusion coefficients).



(a) True support (b) Reconstructed support

Fig. 1. True 2D support and our computed reconstruction for
Experiment 1: (a) True fluorophore locations in the 2D grid,
(b) Final reconstructed support of the fluorophore by thresh-
olding and computing the mode of the results in Fig. 3.

(a)

(b)

Fig. 2. Measurements for Experiment 1: (a) Time-dependent
measurements u corrupted by 7.5% Poisson noise, (b) Time-
averaged measurements ū at the 360 boundary detectors (72
detectors per one exterior source).

Fig. 3. Support reconstruction for Experiment 1 for all 5
sources using SPIRAL-`p method (p = 0.3) in stage 1 of
our proposed method. Here, RMSE = 0.79 and 23 nonzero
components are in the reconstruction.

Fig. 4. Experiment 1 SPIRAL-`1 reconstruction of Q̃ with
the given reconstructed support in Fig. 1(b). RMSE of the
reconstruction is 0.108.

Ground Truth Estimate
h(r1) 2.00× 103 2.07× 103

h(r2) 2.00× 103 1.95× 103

τ 5.70 5.64

Table 1. A comparison between the true and the computed
fluorophore concentrations, h, at point locations r1 and r2
and between the true and computed fluorescence lifetimes, τ
for Experiment 1.

(a) True support (b) Reconstructed support

Fig. 5. Reconstructed 2D support vs. true support of the
fluorophore islands for Experiment 2: (a) True fluorophore
islands in the 2D grid, (b) Reconstructed support of the flu-
orophore by thresholding and computing the mode of the
SPIRAL-`p (p = 0.1) reconstruction.

Ground Truth Range of Estimate
h(I1) 2.00× 103 1.29× 103 to 2.72× 103

h(I2) 2.00× 103 0.58× 103 to 0.95× 103

τ 5.70 5.76

Table 2. A comparison between the true and the computed
fluorophore concentrations, h, at islands I1 and I2 and be-
tween the true and computed fluorescence lifetimes, τ , for
Experiment 2.
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