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Abstract— Structural variants (SVs) are rearrangements of
DNA sequences such as inversions, deletions, insertions and
translocations. The common method for detecting SVs has been
to sequence data from a test genome and map it to a reference
genome. More recently, DNA sequencing studies may consist of
hundreds, or even thousands of individuals, some of which may
be related. In order to improve our ability to identify SVs, we
boost the true SV signals by simultaneously analyzing parent
and child genomes. Our algorithmic formulation – SPaRC –
employs realistic criteria such as sparsity of SVs, relatedness
between individuals and variable sequencing coverage through-
out the genome.

I. INTRODUCTION

The genome of an individual consists in sequences of nu-
cleotides (A,C,G,T) that can range in length from millions of
letters (for a bacteria) or billions of letters (for a mammalian
genome). Structural variants (SVs) represent a rearrangement
within an individual’s DNA sequence – as compared to
a reference. Once thought to be primarily associated with
genetic diseases like cancer [1], there are many types of
SVs, like inversions, deletions and duplications that have
been identified in the genomes of health individuals [2], [3].
As such, SVs represent an important part of understanding
our recent population history [4], [5].

Recent advances in high-throughput sequencing have fur-
ther enabled the efforts to understand human population
history by making it possible to study hundreds or even
thousands of individuals, such as in the recent 1000 Genomes
Project [2]. In most SV detection studies, fragments from test
genomes are sequenced and mapped to a reference. SVs are
identified by statistically significant deviations from expected
patterns of paired-reads [6]. However, due to errors in the
sequencing and mapping process itself and by relying on
data from only one genome at a time, false predictions may
be made and true variants may be missed.

We provide an SV detection pipeline that distinguishes
itself from traditional methods, in several ways. First, most
SV methods consider variants in isolation without enforcing
global constraints such as a the expected sparsity of true SVs.
Second, despite the fact that many studies contain multiple
(often related) individuals, SV predictions are typically made
without using the relatedness between individuals. Finally,
many DNA sequencing methods are biased by the GC-
content – percentage of G/C as opposed to A/T – which
varies throughout the genome [7], [8], [9] (see Figure 1). As
such, computational methods must be able to accommodate

variable coverage throughout the genome in accordance with
this bias. In this paper we attempt to address each of these
criteria by expanding our maximum likelihood approach
[10], [11] for variant detection to incorporate coverage bias
in concordant regions by considering the GC-content in the
neighborhood of each SV for each sequenced individual.
Specifically, we provide an algorithm developed for parent-
child trios to incorporate sparsity, parental relatedness and
varying sequencing coverage, or SPaRC. We present nu-
merical results on both low-coverage simulated and real
sequencing data variant detection. We show that by consid-
ering variable sequencing coverage and relatedness between
individuals improves the ability to predict true SVs.
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Fig. 1. GC-content vs read coverage in Chromosome 10 in 20 kb windows
of the NA12878, which was aligned to March 2006 human reference
sequence (NCBI Build 36.1).

II. METHOD

Here we extend the general framework presented in [11]
for detecting structural variants (SVs) given sequencing data
from one father-mother-child trio (p1, p2 and c). We consider
each individual to have only one copy of each chromosome
(haploid) for simplicity and n represents the number of
locations where a variant can be present. If the individual
does not have a variant at a given location, then the true
signal is 0. Otherwise, if an SV is present, the signal is
1. The observations ~yp1 , ~yp2 , ~yc ∈ Rn are the number of
DNA fragments supporting a possible SV for parents and
child. Moreover, we assume that the data follow a Poisson
distribution [6]:

~yi ∼ Poisson(~σi[(ki − ε)~f∗i ] + ~σiε), (1)



where i ∈ {c, p1, p2} and the constants kc, kp1 , and kp2
represent the sequencing coverage for each individual. To
model coverage bias in different regions in the genome,
σi scales ki by accounting for the GC-content in a given
window. Finally, we assume that the error in measurement
ε > 0 is the same for all observations. Letting Ai =
~σi(ki − ε)I ∈ Rn×n, where I is the n × n identity matrix,
represent the linear projection of the true genomic variants
~f∗i ∈ Rn to the observation ~yi, and stacking the true variant
signals and observations in the form ~f∗ = [~f∗c ;

~f∗p1 ;
~f∗p2 ] and

~y = [~yc; ~yp1 ; ~yp2 ] respectively, the general observation model
can be expressed as

~y ∼ Poisson(Â ~f∗), (2)

where Â ∈ R3n×3n is a block-diagonal matrix with Â =
diag(Ac, Ap1 , Ap2). Under the model (2), the probability of
observing ~y is given by

p(~y |Â ~f∗) =
3n∏
i=1

(~eTi Â
~f∗)~yi

~yi!
exp

(
−~eTi Â ~f∗

)
, (3)

where ~ei is the i-th column of the 3n× 3n identity matrix.
We maximize the probability of observing ~y in (3) using a
maximum likelihood approach to determine the true signal
~f∗.

Continuous relaxation. The true signal ~f∗ is a discrete
binary-valued vector. Thus, maximizing p(~y |Â ~f∗) in (3) will
be a combinatorial optimization problem, which is generally
very difficult to solve. To overcome this challenge, we
relax the space of admissible solutions to include vectors
with continuous values, i.e., ~f ∈ R3n. Consequently, this
relaxation allows us to apply gradient-based optimization
techniques.

Familial constraints. Since the true signal ~f∗ can only take
the values {0, 1}, we require the continuous approximation
~f to be within this interval (i.e., 0 ≤ ~f ≤ 1). Further, we
impose the element-wise constraints that if both parents have
the SV, then the child must also, i.e., ~fp1 + ~fp2 − 1 ≤ ~fc.
Finally, if neither parent has the SV, then the SV cannot be
present in the child, i.e., ~fc ≤ ~fp1 +

~fp2 .

Gradient-based optimization. We can reformulate variant
detection as the following constrained optimization problem:

minimize
~f∈R3n

φ(~f) ≡ F (~f) + τpen(~f)

subject to ~fp1 +
~fp2 − 1 ≤ ~fc ≤ ~fp1 +

~fp2 ,

0 ≤ ~f ≤ 1

(4)

where F (~f) is the negative Poisson log-likelihood function

F (~f) = 1T Â ~f −
3n∑
i=1

~yi log
(
~eTi Â

~f + ε
)
,

and ~f = [~fc; ~fp1 ;
~fp2 ], τ > 0 is a regularization parameter,

1 is a vector of ones, and pen is usually a sparsity enforcing
penalty functional.

To reflect the rarity of true variants in the genome, we
use the sparsity-promoting `1 norm, ‖~f‖1 (see [12]) as the
penalty function in (4). Following the SPIRAL framework
for sparse Poisson reconstruction [13], [14], [15], we solve
(4) by minimizing quadratic approximations to F (~f). The
Hessian of F (~f) in this approximation is replaced by the
scaled identity matrix αkI (αk > 0) at each iterate ~fk

(for details, see [16], [17], [18]). With λ = τ
αk

, this
approximation can be simplified to a subproblem of the form:

~fk+1 = arg min
~f∈R3n

1
2‖~f − ~s

k‖22 + λ‖~f‖1

subject to ~fp1 +
~fp2 − 1 ≤ ~fc ≤ ~fp1 +

~fp2 ,

0 ≤ ~fc, ~fp1 ,
~fp2 ≤ 1,

(5)

where ~s k = [~s kc ;~s
k
p1 ;~s

k
p2 ] =

~fk − 1
αk
∇F (~fk). Then, the

subproblem in (5) can be separated into scalar minimization
problems (see [15] for details). Completing the squares and
ignoring constant terms, we have

minimize
fc,fp1 ,fp2∈R

1
2 (fc − c)

2 + 1
2 (fp1 − p1)

2 + 1
2 (fp2 − p2)

2

subject to fp1 + fp2 − 1 ≤ fc ≤ fp1 + fp2 , (6)
0 ≤ fc, fp1 , fp2 ≤ 1

where (c, p1, p2) = (sc − λ, sp1 − λ, sp2 − λ). The feasible
solution to (6) is obtained by orthogonally projecting the
solution (c, p1, p2) to a three-dimensional feasible region (see
Fig. 2). In particular, there are 27 regions to be considered in
the c-p1-p2 tri-dimensional space according to the constraints
of (6) (see [11] for more details).

Fig. 2. The three-dimensional feasible region of the minimization problem
(6) representing the familial constraints. Note for example that if both fp1
and fp2 are 1, i.e., both parents have the SV, then the child must have the
SV as well, i.e., fc is also 1. Similarly, if neither parents have the SV, i.e.,
fp1 and fp2 are 0, then fc must also be 0.



III. RESULTS

We implemented our proposed scaled familially-
constrained two-parent method in MATLAB by modifying
and incorporating constraints to the SPIRAL framework
[19] and performed reconstructions on both simulated and
real genomic data. The algorithm is initialized by ÂT~y and
terminates if the relative difference between consecutive
iterates converged to ‖~fk+1 − ~fk‖2/‖~fk‖2 ≤ 10−8.
The results are compared to the unscaled familially-
constrained two-parent method [11] with constant
coverage values. The regularization parameters (τ) for
all experiments are optimized to get the minimum RMSE
(%) = 100 · ‖f̂ − ~f∗‖2/‖~f∗‖2.

A. Simulated Data

For the simulated data experiments, we generated two true
parent variant signals ~f∗p1 and ~f∗p2 of size 105 with the level of
sparsity 0.5%, i.e., each signal has only 500 variants. These
two parents ~f∗p1 and ~f∗p2 are chosen to share a percentage
of variants ranging from 0% to 100%, in 25% increments.
In addition, another true signal of size 105 is also generated
as the true child signal ~f∗c , where the value at each point
of the child signal is chosen from either parent with equal
probability. The scaling vector for the sequencing coverage
of each individual ~σi is chosen to be uniformly distributed
in the interval (0.5, 1), i.e., ~σi ∼ U(0.5, 1). Sequencing
coverage values for each individual in unscaled familially-
constrained two-parent method are set to ki E(~σi), where
E(~σi) is the expected value of the scaling vector ~σi. The
error term ε in both methods is set to 0.01.

Analysis. The false positive rate vs. true positive rate for
the child signal reconstruction with two different set of
coverages, kp1 = 5, kp2 = 5, kc = 2 and kp1 = 4, kp2 = 4,
kc = 4, both with 75% similarity of variants between parents
is represented in Fig. 3. Notice the amelioration in predictive
power achieved by the scaled familially-constrained two-
parent method (see the red curves in Fig. 3) over the
unscaled familially-constrained two-parent method (see the
blue dashed curves in Fig. 3). Furthermore, we observe a
higher improvement in the child signal reconstruction with
the scaled method when the parents share more variants in
common. We further observe a similar improvement in signal
reconstruction for the case of the parent signal reconstruc-
tions. However, parent reconstructions show improvement to
a smaller extent when compared to the child and do not
follow the same increasing pattern.

B. 1000 Genomes Project Trio Data

We next apply our method to 1000 Genomes Project [20]
father-mother-daugher CEU trio data (NA12891, NA12892,
NA12878). All genomes were aligned to NCBI36 and se-
quence at low coverage (≈ 4×) in Pilot 1 of the study.
We obtain observations of possible variants using GASV
with WRITE CONCORDANT option on CEU trio data. To
obtain the bias of coverage, we consider a sliding window
of size 20kb. Using the kent tool hgGcPercent from [21]
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Fig. 3. ROC curves illustrating the true positive rate vs. false positive
rate for the child signal reconstruction. From top to bottom: ROC curves
for child signal reconstruction with kp1 = 5, kp2 = 5, kc = 2; and ROC
curves for child signal reconstruction with kp1 = 4, kp2 = 4, kc = 4. Both
cases have a 75% similarity of variants between parents for each scaled and
unscaled two-parent familially-constrained methods. Notice the scaled two-
parent method recovers the simulated child signal with higher true positive
rate than the existing unscaled method.

on the March 2006 NCBI 36 release of the human genome
(hg18.2bit from http://hgdownload.soe.ucsc.edu), we calcu-
lated the GC content for this reference [22]. We aggregate the
total number of concordant regions within the window using
interval trees to determine if either a start or end position lies
within this window. The biased coverage λi is calculated
by accounting for the median number of reads in a given
window in a similar framework as [8]. As such, we have λi =
λexpect.

M
MGC

, where M represents the median read counts in
all the windows, MGC represents the median counts with
the same GC percentage, and λexpect is the expected coverage
for the entire genome of the individual. Reconstructions are
compared against reported experimentally validated deletions
longer than 250bp. Observations marked LowQual as well as
regions near centromeres or telomeres were also filtered from
validated deletions. The resulting true signal had a sparsity
level of 1.77%, consistent with rarity of SV assumption.

Analysis. For the CEU trio, parents shared the majority of
variants as well as similar coverage bias. Figure 4 depicts
novel deletions versus true positives. Since the validated
set of deletions may not be complete, we note that our
method may correctly identify true deletions not in the
experimentally validated set. Figure 4 also illustrates that the
addition of coverage bias does not provide any advantage in
the detection of SVs in the real data. We expect the rest of
the CEU genomes to reflect similar results due to dominant



deletion signals obscuring any affect of variable coverage.
Moreover, the parental signal provides much better support
for a variant in relation to the child signal prediction than
coverage related to GC-content bias. Due to the relatively
large window of 20kb and the heterogeneity of GC-content
throughout even one chromosome in an individual, we may
see an improvement with a more narrow sliding window
to determine bias of coverage. Since a priori knowledge
regarding concordant regions in the genome is required
for this method to determine ~σi, additional computation is
required with respect to the previous familially-constrained
method.
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Fig. 4. ROC curves depicting novel deletions vs validated (true) deletions
for NA12878 Chromosome 10 with τ = 10 and ε = 0.01. Coverage bias
determined by GC-content did not yield any additional advantage and similar
results are expected for remaining CEU trio genomes.

IV. CONCLUSIONS

We present a novel optimization method to detect SVs
from next-generation sequencing data utilizing sparsity of
SVs, relatedness between individuals and variable sequenc-
ing coverage throughout the genome. Our method incor-
porates relatedness of sequenced trios and considers GC-
content bias coverage to improve variant detection in next
generation sequencing data. For the simulated data, we
improve on the specificity and sensitivity of the previous
familially-constrained model. Although coverage bias, as
determined by 20kb windows, did not improve SV prediction
in the CEU data set from 1000 Genomes Project, we describe
similar model performance in light of parental signals and
deletion signal strength in comparison to GC-adjusted cov-
erage.

By employing relatedness of individuals sampled in large-
sequencing studies during the SV prediction phase – instead
of post-processing – our method provides a means to reduce
high-false positive rate of prediction. Future directions of
this work focuses on comparing our results to other methods
of SV detection. Including a sparsity-promoting penalty and
GC-content bias in our predictions yields analytical solutions
to our algorithm, making extending our work to analyze
populations of low-coverage related individuals tractable.
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