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ABSTRACT
In photon-limited image reconstruction, the behavior of

noise at the detector end is more accurately modeled as a
Poisson point process than the common choice of a Gaussian
distribution. As such, to recover the original signal more ac-
curately, a penalized negative Poisson log-likelihood function
– and not a least-squares function – is minimized. In many
applications, including medical imaging, additional informa-
tion on the signal of interest is often available. Specifically, its
maximum and minimum amplitudes might be known a priori.
This paper describes an approach that incorporates this infor-
mation into a sparse photon-limited recovery method by the
inclusion of upper and lower bound constraints. We demon-
strate the effectiveness of the proposed approach on two dif-
ferent low-light deblurring examples.

Index Terms— Photon-limited imaging, Poisson noise,
bounded sparse approximation, convex optimization, wavelets.

1. INTRODUCTION

Signal recovery under low-light conditions arises in many ap-
plications, including medical imaging [1, 2], astronomy [3, 4],
and security and defense [5, 6]. In low photon context, the ar-
rival of photons at the detector is typically modeled by the
inhomogeneous Poisson process:

y ∼ Poisson(Af∗),

where y ∈ Zm+ is the vector of observed photon counts, A ∈
Rm×n+ is the linear projection matrix, and f∗ ∈ Rn+ is the
nonnegative true signal of interest (see e.g., [7, 8]). If the
signal to be reconstructed is known to be sparse, then it can
be approximated by solving a Poisson inverse problem with a
sparsity-promoting penalty (see e.g., [9, 10, 11, 12]).

In addition to sparsity and nonnegativity, other intensity
information about the true signal may be known. In particu-
lar, its maximum and minimum amplitudes at specific regions
might be known a priori. In medical imaging, structural in-
formation such as tissue geometries are used to improve the
accuracy of tomography. For example, in near infrared dif-
fuse optical tomography, structural priors from magnetic res-
onance imaging are incorporated to limit smoothing across
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their shared boundaries and adjust the image smoothness [13,
14, 15]. These structural priors can be expressed as bounds
on the signal intensity, and as such, they can be incorporated
into the photon-limited image recovery problem to enhance
the quality of the reconstruction. This paper describes an op-
timization method (based on the SPIRAL approach [12]) that
includes upper and lower bound constraints that model addi-
tional signal intensity information. We demonstrate the effec-
tiveness of the proposed approach on two different low-light
deblurring examples.

2. PROBLEM FORMULATION

When the maximum and minimum signal intensity informa-
tion is known, the sparsity-promoting Poisson intensity recon-
struction problem has the following constrained minimization
form:

f̂ = arg min
f∈Rn

Φ(f) ≡ F (f) + τ‖f‖1

subject to bL ≤ f ≤ bU ,

where τ > 0 is the regularization parameter and F (f) is the
negative Poisson log-likelihood function

F (f) = 1
TAf −

m∑
i=1

yi log(eTi Af + β),

where 1 is an m-vector of ones, ei is the ith canonical basis
unit vector, β > 0 (typically β � 1 to avoid the singularity at
f = 0) (see e.g., [16]). Our proposed approach builds upon
the the SPIRAL framework in [12], which defines a sequence
of quadratic subproblems, where F (f) is approximated by a
second-order Taylor series expansion, where the Hessian ma-
trix is replaced by a scaled identity matrix αkI , where αk > 0
(see e.g., [17, 18]). In our proposed approach, these quadratic
subproblems are of the form

fk+1 = arg min
f∈Rn

1
2 ‖ f − s

k ‖22 + τ
αk
‖f‖1

subject to bL ≤ f ≤ bU ,

where sk = fk− 1
αk
∇F (fk). If the signal of interest is sparse

in some orthonormal basis W , then the penalty term ‖f‖1 is



replaced by ‖θ‖1, where θ = WTf . Then the minimization
subproblem becomes

θk+1 = arg min
θ∈Rn

φk(θ) = 1
2‖θ − s

k‖22 + τ
αk
‖θ‖1,

subject to bL ≤Wθ ≤ bU . (1)

We note that typically, bL = 0, but we do not make that as-
sumption here. We can solve this minimization problem by
solving its Lagrangian dual. The discussion below follows
[12] very closely. Our main contribution is the extension of
the constraints to general bounds and the inclusion of a con-
vergence proof for the subproblem minimization.

First, we introduce u, v ∈ Rn with u, v ≥ 0 and write
θ = u− v so that φk(θ) in (1) is differentiable [10, 12]:

(uk+1, vk+1) = arg min
u,v∈Rn

1
2‖u− v − s

k‖22 + τ
αk
1
T(u+ v)

subject to u, v ≥ 0, bL ≤W (u− v) ≤ bU .
(2)

Note, however, that the new problem now has twice as many
parameters and has additional nonnegativity constraints on
the new parameters. The last constraints can be expressed as
W (u−v)−bL ≥ 0 and bU −W (u−v) ≥ 0. The Lagrangian
function corresponding to (2) is given by

L (u, v, λ1, λ2, λ3, λ4) = 1
2‖u− v − s

k‖22
+ τ

αk
1
T (u+ v)− λT1 u− λT2 v

− λT3 (W (u− v)− bL)− λT4 (bU −W (u− v)),

where λ1, λ2, λ3, λ4 ∈ Rn are the Lagrange multipliers cor-
responding to the constraints in (2). Differentiating L with
respect to u and v and setting the derivatives to zero yields

u− v = sk + λ1 − τ
αk
1 +WTλ3 −WTλ4, and (3)

λ2 = 2τ
αk
1− λ1.

Then it follows that τ
αk
1
T (u+v)−λT1 u−λT2 v = τ

αk
1
T (u−

v)− λT1 (u− v) in L . Therefore

L (u, v, λ1, λ2, λ3, λ4) = 1
2‖u− v‖

2
2 + 1

2‖s
k‖22

− (u− v)T (sk + λ1 − τ
αk
1 +WTλ3 −WTλ4)

+ λT3 bL − λT4 bU .

Substituting u − v from (3) in L , we obtain the Lagrangian
dual function independent of the primal variables, u and v:

g(λ1, λ3, λ4) =− 1
2‖s

k + λ1 − τ
αk
1 +WT(λ3 − λ4)‖22

+ λT3 bL − λT4 bU +
1

2
‖sk‖22.

Next, let γ = λ1 − τ
αk
1. For the Lagrange dual problem

corresponding to (2), the Lagrange multipliers λi ≥ 0 for
i ∈ {1, 2, 3, 4}. Since 0 ≤ λ2 = 2τ

αk
1 − λ1 = τ

αk
1 − γ and

0 ≤ λ1 = γ + τ
αk
1, then γ satisfies − τ

αk
1 ≤ γ ≤ τ

αk
1. The

Lagrange dual problem associated with (2) is thus given by

minimize
γ,λ3,λ4∈Rn

h(γ, λ3, λ4) = 1
2‖s

k + γ +WT(λ3 − λ4)‖22

− λT3 bL + λT4 bU − 1
2‖s

k‖22

subject to λ3, λ4 ≥ 0, − τ
αk
1 ≤ γ ≤ τ

αk
1. (4)

At the dual optimal values γ?, λ?3, and λ?4, the primal iterate
θk+1 is given by θk+1 = uk+1−vk+1 = sk+γ?+WT(λ?3−
λ?4). We note that the duality gap for (2) and its dual (4) is
zero, i.e., φk(θk+1) = −h(γ?, λ?3, λ

?
4) because (2) satisfies (a

weakened) Slater’s condition [19]. In addition, the function
−h(γ, λ3, λ4) is a lower bound on φk(θ) at any dual feasible
point.

We note that the objective function h(γ, λ3, λ4) can be
written as

h(γ, λ3, λ4) = { 12‖γ‖
2
2 + γT sk}+ γTWT (λ3 − λ4)

+{ 12‖λ3 − λ4‖
2
2 + (λ3 − λ4)TWsk − λT3 bL + λT4 bU}.

We minimize the objective function h(γ, λ3, λ4) by solving
for γ, λ3, and λ4 alternatingly, which is done by taking the
partial derivatives of h(γ, λ3, λ4) and setting them to zero.
Each component is then constrained to satisfy the bounds in
(4). We now describe each step more explicitly.

Step 1. Given λ(j−1)3 and λ(j−1)4 from the previous iterate,
solve

γ(j) = arg min
γ∈Rn

1
2‖γ‖

2
2 + γTsk+ γTWT(λ

(j−1)
3 −λ(j−1)4 )

subject to − τ
αk
1 ≤ γ ≤ τ

αk
1. (5)

The solution to (5) is obtained via thresholding:

γ(j) = mid
{
− τ

αk
1,−sk −WT

(
λ
(j−1)
3 − λ(j−1)4

)
, ταk

1

}
,

(6)
where the operator mid{a, b, c} chooses the middle value of
the three arguments component-wise.

Step 2. Given γ(j), solve

(λ
(j)
3 , λ

(j)
4 ) = arg min

λ3,λ4∈Rn

L(λ3, λ4) ≡ 1
2‖λ3 − λ4‖

2
2

+ λT3
(
W (sk + γ(j))− bL

)
+ λT4

(
bU −W (sk + γ(j))

)
subject to λ3, λ4 ≥ 0. (7)

The minimization problem (7) has the following solution.
Noting 1

2‖λ3 − λ4‖
2
2 = 1

2‖λ3‖
2
2 − λT3 λ4 + 1

2‖λ4‖
2
2, and let-

ting r(j)L = W (sk+γ(j))−bL and r(j)U = bU−W (sk+γ(j)),



then (7) can be written as

(λ
(j)
3 , λ

(j)
4 ) = arg min

λ3,λ4∈Rn

1
2‖λ3‖

2
2 + λT3 r

(j)
L −λ

T
3λ4

+ 1
2‖λ4‖

2
2 + λT4 r

(j)
U

subject to λ3, λ4 ≥ 0. (8)

Note that if r(j)L ≥ 0 and r(j)U ≥ 0, i.e., bL ≤W (sk +γ(j)) ≤
bU , then L(λ3, λ4) ≥ 0 for λ3, λ4 ≥ 0, and is therefore min-
imized at λ3 = λ4 = 0. We now assume otherwise. Com-
puting the gradient of L(λ3, λ4) with respect to λ3 and λ4
yields ∇λ3L(λ3, λ4) = λ3 + r

(j)
L − λ4 and ∇λ4L(λ3, λ4) =

λ4+r
(j)
U −λ3. For each i, unless (bL)i = (bU )i, both (∇λ3

L)i
and (∇λ4

L)i cannot be simultaneously 0 (since this implies
(r

(j)
L )i + (r

(j)
U )i = 0, or equivalently, (bU )i − (bL)i = 0).

Therefore, the components of the gradient of the minimizer
must be 0 or the corresponding components of the minimizer
must lie on the boundary, i.e., (∇λ3

L)i = 0 and (λ4)i = 0,
or (λ3)i = 0 and (∇λ4L)i = 0. These conditions define the
values of the solutions λ(j)3 and λ(j)4 :

λ
(j)
3 = [−r(j)L ]+ = [−W (sk + γ(j)) + bL]+

λ
(j)
4 = [−r(j)U ]+ = [ W (sk + γ(j))− bU ]+.

where the operator [ · ]+ = max{ · , 0} component-wise.

Convergence. We prove the convergence of this alternating
minimization strategy from techniques found in [20]. Let

f(γ, λ3, λ4) = γTWT (λ3 − λ4)

g1(γ) = 1
2‖γ‖

2
2 + γT sk

g2(λ3, λ4) = 1
2‖λ3 − λ4‖

2
2 + (λ3 − λ4)TWsk

−λT3 bL + λT4 bU

so that h(γ, λ3, λ4) = f(γ, λ3, λ4) + g1(γ) + g2(λ3, λ4).
Note the following: (A) Both functions g1 and g2 are con-
tinuous functions whose domains are closed. Consequently,
they are closed (see Sec. A.3.3 in [19]). (B) f is bilinear in
γ and in (λ3, λ4). Therefore, it is a continuously differen-
tiable convex function. (C) The gradient of f with respect
to γ is constant, and therefore ∇γf is Lipschitz continuous.
(D) The gradient of f with respect to (λ3, λ4) is constant, and
therefore ∇λ3,λ4

f is Lipschitz continuous. (E) Since the pri-
mal problem (1) has a continuous objective function and has
a closed and bounded domain, it must have a minimum by
the Extreme Value Theorem. Because the duality gap is zero,
i.e., φk(θk+1) = −h(γ?, λ?3, λ

?
4), the dual problem (4) must

have a solution. In addition, the subproblems (5) and (7) have
explicit minimizers. With these, the assumptions needed to
apply Lemma 3.2 in [20] are satisfied. In particular, we ob-
tain the following convergence result:

Theorem 1: Let {(γ(j), λ(j)3 , λ
(j)
4 )}j≥0 be the sequence gen-

erated by the proposed alternating minimization method. Any

accumulation point of {(γ(j), λ(j)3 , λ
(j)
4 )} is a stationary point

of problem (4).

Feasibility. We now show that at the end of each iteration j,
the approximate solution θ(j) = sk+γ(j) +WT (λ

(j)
3 −λ

(j)
4 )

to (1) is feasible with respect to the constraint bL ≤ Wθ ≤
bU . First, note that

Wθ(j) = Wsk +Wγ(j) + λ
(j)
3 − λ

(j)
4

= W (sk + γ(j)) +
[
bL −W (sk + γ(j))

]
+

−
[
W (sk + γ(j))− bU

]
+
. (9)

We note that (9) is equivalent to

Wθ(j) = mid{bL,W(sk + γ(j)), bU}.

Thus, we can terminate the iterations for the dual problem
early and still obtain a feasible point.

3. NUMERICAL RESULTS

We investigate the effectiveness of the proposed bounded
SPIRAL-`1 (B-SPIRAL-`1) method by solving two image
deblurring problems. In both experiments, the blurry obser-
vations are obtained from Af∗, where the signal f∗ is con-
volved with a 5 × 5 blur matrix, whose action is represented
by the matrix A. The MATLAB’s poissrnd function is
used to add Poisson noise. Here, we used the Daubechies-2
(DB-2) wavelet basis for W .

We implemented the B-SPIRAL-`1 algorithm by includ-
ing constraints to the existing SPIRAL approach [21] to
solve subproblem (1). The algorithm is initialized using
the lower and upper bound information incorporated AT y
and terminates if the relative difference between consecu-
tive iterates converged to ‖fk+1 − fk‖2/‖fk‖2 ≤ 10−6.
Similar to the SPIRAL approach, we define 30 as the mini-
mum number of iterations to avoid any issues with premature
termination. Finally, we compare the results with nonneg-
atively constrained SPIRAL-`1 method based on RMSE
(%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2. The final SPIRAL-`1 re-
constructions are thresholded using the same bounds used in
B-SPIRAL-`1. The regularization parameters (τ) for both
experiments are optimized to get the minimum RMSE value.

3.1. QR code deblurring

In this experiment, we wish to recover a Quick Response
(QR) code of size 512× 512 (see Fig. 1(a)) from the Poisson-
noise corrupted blurry image (see Fig. 1(b) and the red
zoomed region in Fig. 1(c)). We set bU as the peak inten-
sity of f∗, i.e., bU = 3e+4, and bL as the zero intensity.

The SPIRAL-`1 method took 16.52 sec (32 iterations) to
converge, and its reconstruction (f̂S) has RMSE = 18.92%.
In contrast, the proposed B-SPIRAL-`1 method took 25.06



(a) True image f∗ (b) Observation y (c) Zoomed region

Fig. 1. Experimental setup: (a) True QR code image f∗, (b)
noisy and blurry observation y with mean photon count 5.7,
(c) a zoomed region of y.
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(a) log(1 + |f∗ − f̂S |) (b) log(1 + |f∗ − f̂B |)
(RMSE = 18.92%) (RMSE = 16.42 %)

Fig. 2. (a) Log magnitude of error between the true image,
f∗, and the SPIRAL-`1 reconstruction f̂S , (b) Log magnitude
of error between f∗ and the proposed B-SPIRAL-`1 recon-
struction f̂B . RMSE (%) = 100 · ‖f̂ −f∗‖2/‖f∗‖2. Note the
lower RMSE for the proposed method’s reconstruction, f̂B ,
whose log error is closer to zero (represented in blue) than the
original method.

sec (30 iterations) to converge, but its reconstruction (f̂B)
has RMSE = 16.42%. The B-SPIRAL-`1 improvements can
be best seen in the magnitude of the log error between the
true signal f∗ and the reconstructions (see Figs. 2(a) and (b)).
Note that the f̂B reconstruction more closely matches the
original signal f∗ than the f̂S reconstruction by the preva-
lence of blue regions in Fig. 2(b).

3.2. Shepp-Logan phantom image deblurring

In the reconstruction of optical images, anatomical informa-
tion (the tissue shape and/or structure) from x-ray computed
tomography (CT) or magnetic resonance imaging (MRI) can
be used to improve the spatial resolution [22, 23]. In this ex-
periment, we wish to apply a similar approach to recover the
Shepp-Logan phantom image of size 128× 128 from the ob-
served image (see Fig. 3(a) and (b) respectively), when the
tissue outer boundary is known. More specifically, we in-
corporate that outer boundary as a structural information (see
Fig. 3(c)), where the lower and upper bound intensities are
known based on the region (i.e., 0 and 1e+6 are outside and
inside tissue maximum intensities respectively).

For this problem, the SPIRAL-`1 method took 1.89 sec
(39 iterations) to converge, and its reconstruction (f̂S) has
RMSE = 21.57%. The proposed B-SPIRAL-`1 method took
1.98 sec (30 iterations) to converge, and its reconstruction
(f̂B) has a lower RMSE = 18.85% (see Figs. 4(a) and (b)).
Note the more accurate reconstruction along the top edges as
well as the overall improved accuracy within the body (repre-
sented in yellow) in comparison to the f̂S reconstruction.
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(a) True image f∗ (b) Observation y (c) Mask

Fig. 3. Experimental setup: (a) True phantom image f∗, (b)
noisy and blurry observation y with mean photon count 45.8,
(c) mask with prior structural information.

2

4

6

8

10

12

0 0

2

4

6

8

10

12

(a) log(1 + |f∗ − f̂S |) (b) log(1 + |f∗ − f̂B |)
(RMSE = 21.57%) (RMSE = 18.85%)

Fig. 4. (a) Log magnitude of error between the true image,
f∗, and f̂S , and (b) Log magnitude of error between f∗ and
f̂B . RMSE (%) = 100 · ‖f̂ − f∗‖2/‖f∗‖2. Note the pro-
posed method’s log error is lower on the whole (represented
in yellow) in contrast to the mostly orange in (a).

4. CONCLUSION

In this paper, we formulated a sparsity-promoting bound-
constrained photon-limited image recovery method by solv-
ing the dual problem based on an alternating minimization
strategy. The utilization of any available prior image infor-
mation has proven very successful for accurately recovering
images. We demonstrate that the proposed B-SPIRAL-`1
method leads to more accurate reconstructions than the sim-
ply thresholded solutions from the nonnegatively constrained
minimization method.
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